GABA Itself Promotes the Developmental Switch of Neuronal GABAergic Responses from Excitation to Inhibition

نویسندگان

  • Karunesh Ganguly
  • Alejandro F. Schinder
  • Scott T. Wong
  • Mu-ming Poo
چکیده

GABA is the main inhibitory neurotransmitter in the adult brain. Early in development, however, GABAergic synaptic transmission is excitatory and can exert widespread trophic effects. During the postnatal period, GABAergic responses undergo a switch from being excitatory to inhibitory. Here, we show that the switch is delayed by chronic blockade of GABA(A) receptors, and accelerated by increased GABA(A) receptor activation. In contrast, blockade of glutamatergic transmission or action potentials has no effect. Furthermore, GABAergic activity modulated the mRNA levels of KCC2, a K(+)-Cl(-) cotransporter whose expression correlates with the switch. Finally, we report that GABA can alter the properties of depolarization-induced Ca(2+) influx. Thus, GABA acts as a self-limiting trophic factor during neural development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA type-A activity controls its own developmental polarity switch in the maturing retina.

In the developing CNS, GABA(A) responses switch from early excitation to late mature inhibition. The developmental factors that induce the polarity switch remain to be unraveled. Here, we bring the first experimental evidence in vivo in the retina that chronic activation of GABA(A) receptors is necessary for the switch to occur and for the chloride extrusion mechanism (through the K+/Cl- cotran...

متن کامل

Chronic hyperosmotic stress converts GABAergic inhibition into excitation in vasopressin and oxytocin neurons in the rat.

In mammals, the increased secretion of arginine-vasopressin (AVP) (antidiuretic hormone) and oxytocin (natriuretic hormone) is a key physiological response to hyperosmotic stress. In this study, we examined whether chronic hyperosmotic stress weakens GABA(A) receptor-mediated synaptic inhibition in rat hypothalamic magnocellular neurosecretory cells (MNCs) secreting these hormones. Gramicidin-p...

متن کامل

A developmental switch to GABAergic inhibition dependent on increases in Kv1-type K+ currents.

Mature nucleus magnocellularis (NM) neurons, the avian homolog of bushy cells of the mammalian anteroventral cochlear nucleus, maintain high [Cl-]i and depolarize in response to GABA. Depolarizing GABAergic postsynaptic potentials (GPSPs) activate both the synaptic conductance and large outward currents, which, when coupled together, inhibit spikes via shunting and spike threshold accommodation...

متن کامل

Tonically Balancing Intracortical Excitation and Inhibition by GABAergic Gliotransmission

For sensory cortices to respond reliably to feature stimuli, the balancing of neuronal excitation and inhibition is crucial. A typical example might be the balancing of phasic excitation within cell assemblies and phasic inhibition between cell assemblies. The former controls the gain of and the latter the tuning of neuronal responses. A change in ambient GABA concentration might affect the dyn...

متن کامل

Blocking GABAergic inhibition increases sensitivity to sound motion cues in the inferior colliculus.

Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were recorded to interaural phase modulation (IPM) before, during, and after iontophoresis of bicuculline, an antagonist to the inhibitory neurotransmitter GABA. Sensitivity to the direction of virtual motion resulting from IPM is an emergent property of neurons at the level of the IC. One model to ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2001